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Preview

This chapter continues the discussion of risk-neutral pricing from MATH5635. We begin
by constructing hedging portfolios for contingent claims using the martingale representation
theorem in a one-dimensional market. We then extend the framework to multi-dimensional
market models with multiple risky assets and driving Brownian motions. In this context,
we explore how the number of traded assets relative to the number of driving Brownian
motions affects the construction of risk-neutral measures (RNMs), market completeness,
and arbitrage opportunities, all within the framework of the fundamental theorems of asset
pricing.

Key topics in this chapter:

1. Martingale representation theorem:;

2. Multi-dimensional market model;

3. The first and second fundamental theorems of asset pricing.

1 Martingale Representation Theorem

In this section, we let (Q,F, {F;}icpor), P) be a filtered probability space, and {B;}icjo1]
be a standard Brownian motion. We consider a single risky asset whose price {S;}icjo.r) is
governed by

dS; = Sy dt + S0y d By, (1)

where 1,0 are {F;}ic0r-adapted, and o, > 0 a.s. We also let {r;},ci01] be a {Fi}icpo-
adapted process representing the risk-free interest rate, and {D;};com be the process of
discount factor, given by

Dt = e_fgrs ds.

1.1 Review of Risk-Neutral Pricing

Recall that in risk-neutral pricing, we constructed a risk-neutral measure (RNM) such that
one can price the contingent claim with payoff Vi at time 7', where Vr is Fpr-measurable,

1



using the formula

‘/0 =K [DTVT] = fE/ |:€_ fOT Tt dtVT:| .
We recall /formalize the definition of P:

Definition 1.1 (Risk-neutral measure) A probability measure P is called the risk-
neutral probability measure if

1. P is equivalent to P, i.e., P~ P; _

2. the discounted price of risky asset, { D¢S;}iejo.17, is @ P-martingale.

To construct such a P, we consider the Ito dynamics of { DS, }iepo,r). By the product rule,
we have

d(DtSt) — DtdSt + Stht + d(S, D>t
= DtSt ((,ur — Tt) dt + O¢ dBt)
- DtStdB/t,

where

t —_—
Bt:/ 0, ds, 0, .= "t
0

0¢

Therefore, if one can construct_a probability measure P such that B is a P-Brownian mo-
tion, {D;St}ieo,r) would be a P-martingale. The construction is achieved by Girsanov’s
theorem.

Let V be a Fp-measurable random variable, which represents the payoff of a contingent
claim written on S at time 7. To derive the price of the contingent claim, we hope to
construct a self-financing portfolio {X;}icjo,r) using a hedging strategy with an adequate
level of initial capital, Xy, such that, at ¢ € [0, 7]

(i) hold A; units of stock;
(i) lend the amount X; — A;S; at the risk-free rate ry;
(i) At t =T, Xy = Vi

If such a strategy A; exists, by the law of one price, the price of the contingent claim at any
t € [0,T)] is precisely X;.

By the self-financing property, the dynamics of X is given by
dXt = AtdSt + Tt(Xt - AtSt) dt
= [’rtXt -+ AtSt(,ut — Tt)] dt + AtStO't dBt
= TtXt dt + AtStO't dét



The discounted portfolio value, {D;X;}icpo,r, thus follows

d(DtXt) == Dt dXt + Xt th + d<X, D>t = AtStUt dét (2)

Two implications from the above derivations:
1. Under I?PE, any portfolio strategy {A;}ico,r) always earns a risk-free rate r;
2. the process {D;X;}icppr is a ﬁ’—martingale.

Owing to the second observation, we can express the portfolio value X; (and thus the price

of the contingent claim at t) as

™ DT ™ —fTr ds m —fTr ds

X, = E | SEXalF —E | I x| F| B [en v F (3)
t

where the last equality follows from the assumption that, the strategy A is such that X, =

Vr.

This construction looks very natural, right? However, one major detail is indeed missing
— is it always possible to find A in a way that X = V;? The martingale representation
theorem presents in the next subsection provide a positive answer to the construction.

1.2 Existence of Hedging Strategy

The risk-neutral pricing formula is based on the assumption that we can find a strategy
{At}te[o,T] such that the portfolio value X1 = V. The existence of such a portfolio strategy
is a consequence of the martingale representation theorem (MRT):

Theorem 1.1 (Martingale representation) Let {B;};cpo be a Brownian motion
on the filtered probability space (Q, F, {FP }iep.r1, P), where {F }ieor) is the filtration
generated by {B}ico,n), i-e., i.e.,

.EBZU(BS:OSSSt).

Then, for any martingale {M;}cjo,r) adapted to {FB }eepo,r), there exists an adapted
process {I'; }+cpo,r) such that

t
M, = M, +/ ['sdB;.
0

The MRT essentially says, if the filtration is generated by B, any P-martingale can indeed
be written as an It6 integral with an appropriate coefficient I' and initial condition.

Based on Theorem [I.T} we have the following martingale representation theorem upon a
change of measure:



Corollary 1.2 Let {B;}icpo,m be a Brownian motion on the filtered probability space
(Q, F A{F Ycioa), P). Let

_ ‘ ! 1 [
B, = Bt+/ 0,ds, Z, = exp (—/ QsdBt——/ Hgds).
0 0 2 Jo

Then, for any {F;}icpo,n), I?P/’—martingale {]\Z}te[oﬂ, there exists an {F} }iep0.r-adapted
process {I'; }+cjo,r] such that

—_— —~ t o~ ~
My = M +/ Iy dBs.
0
Proof. We first claim that M, := Zt]\Z is a P-martingale. For any 0 < s < ¢t < T, using
Bayes’ theorem of condition expectation (Lemma 3.4 in Chapter 7 of MATH5635),
E[Mi|F,] = E[ZMi|F] = ZE[M|F) = ZM,,

which verifies the claim. By Theorem there exists an adapted process I' such that

t
M, = M0+/ T, dB..
0

To proceed, we apply It6’s lemma on ]\A/[/t = % Recall

dZt = —Ztet dBt,
so that

1 Az, 1/( 2 0,7, 7202 1,
d| = |=——+=| == | d4)s = —-dB dt = 0; dt + 6,dBy) .
(Zt> ZE+2(Z?> o= g dBut gt = 7 (0 dt 4 0, dB)

Hence, by the product rule,

— Mt
My =d <7)

dM, 1 1
S td(zt) +d< ,Zt>
Ft Mt Qtrt
=7 B+ o (07 dt + 0, dB,) + 5
0 1
(M0, +T,) dt + — (T, + 6,M,) dB,
~Z Z,
6 1
(M +Ty) dt + — (Ty + 0, M) [dBt ) dt]
Zt Zt




T, +0,M, ~
N )
7, !

r, — -

Therefore, we arrive at the representation with

]

The existence of {A;}+co,r) can now be proven using Corollary . We define a process
{Vt}te[O,T] by
(4)
This is exactly the equation satisfied by X in . However, unlike the derivation of , the
process {V;}iepo, is defined independently of any trading strategy, which is always possible.

By construction, {Dt‘N/t}te[O,T] is a P-martingale. Hence, by the MRT (Corollary , there
exists an adapted process I' such that

_ ~ [ Dy
=FE |— .
Vi |:Dt VT|]:t}

~ ~ t~ ~
0

Now, define the initial capital X := XN/O, and the hedging strategy by

Ay = L (6)

Sto't'

Substituting this and the choice of initial capital X, = \N/O into the dynamics , we
have

t t
DX, = X+ / AySgo,dBs = V) +/ I'sdBs.
0 0
which is precisely . Hence, X; = V; for all t € [0,7]. In particular, X = Ve = V.
Therefore, the desired hedging strategy is indeed given by @

The MRT only tells us the a hedging portfolio exists and is related to the process r.
However, it does not give the explicit form of the process I' in general. Recall that in the
particular case when we were pricing European options under the Black-Scholes model, i.e.,
u. = pand 0. =0 >0 and Vi = V(T, S7), the hedging portfolio is given by

At — VS(t, St),



where V(t,s) represents the price of the European option at time ¢ when S; = s, which
is the solution of the Black-Scholes partial differential equation (PDE). Hence, the

corresponding process [ is given by
ft = StO'tAt == StO'tVS(t, St)

In the next chapter, we will further relate the hedging strategy with solutions of PDEs.

2 Multidimensional Pricing Model

In this section, we consider a market with m risky assets driven by a d-dimensional Brownian
motion in the filtered probability space (2, F, {Fi }ieo.1, P),

B, = (B},...,BY, t€0,T],

such that each B?, i = 1,...,d, is a standard 1-dimensional Brownian motion, each B?, B/
are independent for ¢ # j.

We write S; = (S},...,S™), where S} represents the price of the i-th risky asset at time
t, which is governed by the following dynamics:

d
dS; = pyS;dt + Sy o dBj. (7)
Jj=1

Here, ()™, (0")i=1, mj=1..a are {F;}-adapted processes representing the rate of return

vector and the volatility matrix, respectively.

Our objective is to construct risk-neutral measures and replicating portfolios for contin-
gent claims in a multi-dimensional pricing model. Unlike the one-dimensional case, this
requires additional conditions on the drift and volatility coefficients. We begin by extending
the definition of a risk-neutral probability measure to the multi-dimensional setting.

Definition 2.1 (Risk-neutral measure for multidimensional models) A proba-
bility measure P is called a risk-neutral probability measure if

1. P is equivalent to P, i.e., P ~ IP; B

2. fori=1,...,m, the discounted price of risky asset, {D;S; }+ejo.17, is a P-martingale.

In the sequel, we shall need the following generalization of Girsanov’s theorem and MRT
for multidimensional models, which we state without proof. Nevertheless, we remark that
the multidimensional Girsanov’s theorem can be proven using Lévy’s characterization.



Theorem 2.1 (Multidimensional Girsanov’s) Let {Bi;},cio1] be a d-dimensional
Brownian motion in the filtered probability space (Q, F, {F; }ico,r), P), and {0;}ieo,m) be
a d-dimensional adapted process of the form 6, = (6}, ...,0%). Define the processes

t 1 t
Zy = exp (—/ OS-dBS——/ ]05]2d3)
0 2 Jo
d t 1 t d
— — 07 dB) — - 011% d
o (-3 [[ani =[S as).
7=1 j=1
B t t t
Bt:Bt—F/‘@st:(Btl—i—/e;dS,,BtCl_F/egdS)
0 0 0

Suppose that
T
E U 10,> 22 dt} < 00.
0

Then, E[Z7] = 1, and under the probability measure ﬁ’, where
P(A) :=E[Zrla], A€ Fr=F,

the process {ét}te[O,T] is a standard Brownian motion.

Theorem 2.2 (Multidimensional martingale representation) Let {B,}:co1] be a
d-dimensional Brownian motion on the filtered probability space (2, F, {Ff }icior). P),
where {FP}ep,r) is the filtration generated by {B;}iepo.1, i-¢., i.¢.,

FB=0(B,:0<s<t),

Then, for any martingale {M, };cjo,r] adapted to {FP }iejo.17, there exists a d-dimensional
adapted process {T'; }sepo,r] with Ty = (T'},...,T'}) such that

t
M, = MO—}-/I‘S-dBS.
0

In addition, using the notations and assumptions in Theorem [2.1}, for any P—martlngale
{Mt}te[o 7] adapted to {FPlicor, there exists a d- dlmensmnal adapted process

(T }ieor) with Ty = (T}, T%) such that

t
Mt:Mo—i—/ I's - dB..
0



3 First Fundamental Theorem of Asset Pricing

This section discusses the existence of risk-neutral probability measure under the multidi-
mensional market model and its relationship with the no-arbitrage property of the market.
The latter is framed as the first fundamental theorem of asset pricing.

Recall in the 1-dimensional case, to make {D;S;}icor) @ Iﬁ—martingale, we “absorb" the
drift term of D;S; into the stochastic integral:

d(DtSt) = DtSt(,ut - Tt) dt + DtSTO't dBt = DtStO-t (Ht dt + dBt) s

and we define ét such that dét = 0;dt + dB;. In the multidimensional case, we follow a
similar path, except that the market price of risk would be a d-dimensional vector, which
shall be solved by a system of linear equations.

For ¢« =1,...,m, by the product rule, we have
d(D;S}) = S} dD; + D, dS;}
j=1

d
= DS [(ui —r)dt+) o/ dB]

=1

Suppose that there exists a d-dimensional process 8@ = (6',...,6%) such that,
P = Zo—;’eg, i=1,...,m, t€[0,T]. (9)

Then, we can rewrite (g]) as

d d
d(D,S}) = D,S! Z o6 dt +> oy dB]

Jj=1

— DtSlZa (6] di + dB]

= D,S! Z o dBY, (10)

J=1

where B/ := B! + fo 07 ds. By Girsanov’s theorem (Theorem [2. , we can define P such that
Bt — (B},...,BY) is a d-dimensional P-Brownian motion, making each DS/, i = 1,...,m
a P—martlngale Consequently, P is a risk-neutral probability measure.
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Therefore, the existence of a risk-neutral probability measure amounts to the existence of
solutions for the linear system (9)) for ¢ € [0, 7], which we shall refer to as the market price
of risk equations. One can also express the system in matrix form: define

ol e ol T
o= . 1 | eR™Y o= : € R™. (11)
N Pyt =T

Then, the system is equivalent to solving 6; such that
Etet = O, t e [O,T] (].2)
Note that for each ¢ € [0, T, the system has m equations with d unknowns.

Theorem 3.1 A risk-neutral probability measure exists if the market price of risk equa-
tions (9) (or equivalently, (12)) admits a solution for all ¢ € [0, T]. Equivalently, such a
measure exists if, for any t € [0, 77,

a; € Col(%,),

where Col(A) denotes the column space of a matrix A.

A sufficient condition for existence of a risk-neutral probability measure is rank(%;) = d
for all ¢t € [0,7T]. Theorem only discuss conditions for existence of risk-neutral measures,
but not uniqueness. Indeed, there may exist multiple risk-neutral probability measures, and
the implications shall be discussed in the next section.

Consider the portfolio value process {X;}ico,r) With the self-financing portfolio strategy
A; = (A}, ..., A™) with an initial capital X, where:

1. A! denotes the number of shares held in the i-th risky asset with price S;. The total
market value invested in the risky assets S is thus > /" | ALS);

2. the remainder of the portfolio value earns a risk-free rate r;.
Hence, the dynamics of X; is given by
dX, = AjdS] +r (Xt -y A;’Sj) dt
i=1 i=1
=Xy dt+ Y A (dS] —n,S]) dt
i=1

= r, X, dt + Z At d (D,S). (13)



Hence, the discounted portfolio value, D;X;, has the following dynamics:

d(D,X,) = X, dD; + D;dX, = Y _ A, d(D,S}). (14)
i=1
If a risk-neutral probability measure P exists such that DS/, i = 1,...,m, are P-

martingales. Then, from and , we have the following observations, similar to the
1-dimensional case:

1. the portfolio X; earns the risk-free rate r; under P;
2. the discounted portfolio value D, X; is a ﬁ’—martingale.

The existence of a risk-neutral probability measure asserts that the market is free from
arbitrage opportunity, which is framed in the first fundamental theorem of asset pric-
ing. We first define the meaning of arbitrage:

Definition 3.1 An arbitrage is a portfolio X; such that X, = 0, and there exists T" > 0
such that
P(Xy >0)=1, P(Xr>0)>0.

In other words, an arbitrage is a self-financing portfolio with zero initial capital that never
incurs a loss and yields a strictly positive payoff with positive probability.

The following theorem is the main result of this section, which states that a market is
arbitrage-free if P exists.

Theorem 3.2 (First fundamental theorem of asset pricing) If there exists a risk-
neutral probability measure for the market model, then the market admits no arbitrage.

Proof. Let X; be a portfolio with zero initial capital, i.e., Xo = 0. If P exists, by the above
discussion, we know that D, X, is a P-martingale.

Assume that contrary that X, is an arbitrage, i.e., there exists T > 0 such that P(Xp >
0) = 1, P(X7 > 0) > 0. By the equivalence of P and P, we also have P(X; > 0) = 1,
IF’(XT > (0) > 0. Since Dy > 0 a.s., we have Dy X7 > 0 P-a.s., and ﬁ(DTXT > (0) > 0. This
would imply

E[DrXr] > 0.
However, using the martingale property of D;X; under P and the fact that Xo =0, we have

E[DrXr] = DyXo =0,

which is absurd. Hence, no arbitrage exists. O]

The following example illustrates that arbitrage could exist if @ is not solvable.
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Example 3.1 Suppose that there are 2 stocks with 1 driving Brownian motion, i.e.,
m = 2 and d = 1. In addition, we assume that all model parameters, pu,r, o, are
constants. As such, the system @D is reduced to a 2 x 1 system:

pe=r
ol b,
2
—r
K BRA 9
o
The system is solvable iff
pl—r _p—r
ol o2
Suppolse that 12;he above condition does not hold, and without loss of generality, suppose
that L= < L5 Then, consider a portfolio with A} = —=L5 units of S* (short), and

A} = s units of S? (long). The amount of initial capital required would be

1 1
We borrow (resp. lend) at the risk-free rate if 25 — 2 is positive (resp. negative). In that
case, the initial capital is Xy = 0.
For t > 0, the dynamics of X is given by

2
dX, =Y AdS] + (X, — AS} — A]S})dt

=1

1 1 11
= (ﬂldt+01dBt)+—2(M2dt+02d3t)+7“(Xt+—1——) dt
9 o

ol 2

2 1
:rXth{“ — & IT} dt.
o o

Hence, the discounted portfolio value is

2 _ 1 _
d(DtXt) = Dt [Iu r - lu r:| dt

o2 ol

By the given assumption, D;X; is non-random with a positive drift, whence it admits a
positive and non-random portfolio value with zero initial capital, i.e., arbitrage.

The existence of RNMs is characterized by the existence of solutions to the system .
Below we examine the relationship between the existence and the values of m and d.

e Case 1: m >d
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— More assets than sources of randomness, the system ({12 is overdetermined;

— Risk-neutral measure exists only if the asset drifts are mutually consistent (see Example
for inconsistent asset drifts).

e Case 2: m<d
— Fewer risky assets than sources of randomness, the system is underdetermined;

— The system either has no solution (inconsistent drifts; no RNM), or infinitely many
solutions (consistent drifts; multiple RNMs)

e Case 3: m=d
— If 3, is invertible, then RNM exists and is unique;

— If 3, is not invertible, then either RNM does not exists, or there exists infinitely many
RNMs.

Summary: The existence of RNMs is “easier” when m < d, since more risky assets may
lead to inconsistent drift conditions.

4 Second Fundamental Theorem of Asset Pricing

In this section, we discuss the uniqueness of risk-neutral probability measure and its implica-
tion — market completeness. This result is depicted in the second fundamental theorem
of asset pricing.

Definition 4.1 A market is said to be complete if, for any contingent claim with payoff
Vr € L*(Fr), there exists a self-financing portfolio strategy A; = (A} ..., A") and an
initial capital X, such that

XT = VT, P-a.s.

Recall that if a risk-neutral probability measure P exists, the risk-neutral price of the
contingent claim at time ¢ is given by
~ [ D
V,=E {—Tv;}ft]. (15)
D,
By the law of one-price (or the first fundamental theorem of asset pricing), in that case, a
market is complete iff there exists a self-financing portfolio strategy A; and an initial capital
Xy such that for any ¢ € [0, 7],
X; =V, P-as

In the sequel, we assume that the filtration {F;}.c0.77 is generated by the d-dimensional
Brownian motion B, i.e., F; = FB. We also assume that a risk-neutral probability P exists.
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Since { DV} }ieqo,r) defined in isa I?P/)—martingale, by the multidimensional MRT (Theorem
, there exists a d-dimensional process I'y = ('}, ..., I'?) such that

d ¢
DtVt:VOJrZ/ IV dB/. (16)
j=1"0

On the other hand, consider a portfolio with initial capital X, and self-financing portfolio
strategy A, using and , its dynamics is given by

m t
DX, = DoXo+ Y / AL d(D,S})
i=1 70
d t m _
= DX+ [ 3 ALDSIoY dB] (17)
j=170 =1

By equating and , the desired portfolio strategy can be obtain by solving the
following system of equation:

L &
E A;S;U;J:Ht j=1,....d, t€]0,T)]. (18)
=1

)
t

Note that for each t € [0, 7], is a linear system with d equations and m unknowns. By
letting

I 101
D_tt A S,
/8t = € Rd? Yy = € Rma
Iy AmSm
Dy

the system ((18) can also be written as
E;l—yt = /8t7 te [O7T]a (19)

where X; € R™*? was defined in ((11). Hence, the contingent claim can be hedged in (19
admits a solution.

The following is the main result of this section, which relates market completeness with
uniqueness of risk-neutral measures.

Theorem 4.1 (Second fundamental theorem of asset pricing) Suppose the risk-
neutral measures exist in a market model. Then, the market is complete if and only if
the risk-neutral measure is unique.
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Proof. Suppose that the market is complete. We shall show the the risk-neutral probability
measure is unique.

Let P! and P? be two risk-neutral measures, and denote the associated expected values
by E! and E2, respectively. Let A € Fr = FB, and consider a contingent claim with payoff
Vi = })—f;. Since the market is complete, under each IF’i, 1 =1, 2, there exists a portfolio with
initial capital X and a self-financing strategy such that X = Vp, i = 1,2, and that D, X}
is a Pi-martingale. Hence,

X} = E'[DrX}] = E'[DrVy] = PY(A),
X2 = E'[DrX2] = E'[DrVi] = P*(A).

Note that by the first fundamental theorem of asset pricing, no arbitrage could exist, and
thus X] = X2. Hence, P!(A) = P2(A). Since A € Fr is arbitrary, we conclude that P! = P2

Next, we suppose that the risk-neutral probability measure Pis unique. This is equivalent
to requiring that the system admits a unique solution for each ¢ € [0,7]. Hence, for any
t €10,7], null(X;) = dim(Ker(X%;)) = 0, where

Ker(A) := {z € R?: Az = 0}.

By the rank-nullity theorem, we have rank(3;) = d — 0 = d, for any ¢ € [0, 7], which also
implies rank(X,) = d. Consequently, the system (19) is solvable for any given 3; € R
In other words, one can always find a hedging strategy that replicates the payoff of any
contingent claim. Therefore, the market is complete.

m
We examine the relationship between the uniqueness of a RNM and the values of m and
d, which is characterized by the system ((19)).
e Case 1: m > d
— More risky assets than sources of randomness; the system ((19) is under-determined;

— If a risk-neutral measure exists, then it is unique if and only if rank(3,;) = d for all
t € 10,77

e Case 2: m<d
— Fewer risky assets than sources of randomness, the system (|19)) is over-determined;
— Since rank(X;) < m < d, there exists contingent claims such that is not solvable;
— The market is not complete.

e Case 3: m=d
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— If 3, is invertible, then RNM exists and is unique;

— If 3, is not invertible, then either RNM does not exists, or there exists infinitely many
RNMs.

Summary: The uniqueness of RNMs is “easier” when m > d, since more risky assets can be
)
used to hedge the sources 0] randommness.

Further Readings

1. Novikov’s condition and its relation with Girsanov’s theorem;
2. Risk-neutral pricing under incomplete market, i.e., multiple risk-neutral measures;

3. Pricing of forwards and futures.
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