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Preview
This chapter continues the discussion of risk-neutral pricing from MATH5635. We begin
by constructing hedging portfolios for contingent claims using the martingale representation
theorem in a one-dimensional market. We then extend the framework to multi-dimensional
market models with multiple risky assets and driving Brownian motions. In this context,
we explore how the number of traded assets relative to the number of driving Brownian
motions affects the construction of risk-neutral measures (RNMs), market completeness,
and arbitrage opportunities, all within the framework of the fundamental theorems of asset
pricing.

Key topics in this chapter:
1. Martingale representation theorem;

2. Multi-dimensional market model;

3. The first and second fundamental theorems of asset pricing.

1 Martingale Representation Theorem
In this section, we let (Ω,F , {Ft}t∈[0,T ],P) be a filtered probability space, and {Bt}t∈[0,T ]

be a standard Brownian motion. We consider a single risky asset whose price {St}t∈[0,T ] is
governed by

dSt = Stµt dt+ Stσt dBt, (1)

where µ, σ are {Ft}t∈[0,T ]-adapted, and σt > 0 a.s. We also let {rt}t∈[0,T ] be a {Ft}t∈[0,T ]-
adapted process representing the risk-free interest rate, and {Dt}t∈[0,T ] be the process of
discount factor, given by

Dt = e−
∫ t
0 rs ds.

1.1 Review of Risk-Neutral Pricing

Recall that in risk-neutral pricing, we constructed a risk-neutral measure (RNM) such that
one can price the contingent claim with payoff VT at time T , where VT is FT -measurable,
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using the formula
V0 = Ẽ [DTVT ] = Ẽ

[
e−

∫ T
0 rt dtVT

]
.

We recall/formalize the definition of P̃:

Definition 1.1 (Risk-neutral measure) A probability measure P̃ is called the risk-
neutral probability measure if

1. P̃ is equivalent to P, i.e., P̃ ∼ P;
2. the discounted price of risky asset, {DtSt}t∈[0,T ], is a P̃-martingale.

To construct such a P̃, we consider the Itô dynamics of {DtSt}t∈[0,T ]. By the product rule,
we have

d(DtSt) = DtdSt + StdDt + d⟨S,D⟩t
= DtSt ((µr − rt) dt+ σt dBt)

= DtStdB̃t,

where

B̃t =

∫ t

0

θs ds, θt :=
µt − rt
σt

.

Therefore, if one can construct a probability measure P̃ such that B̃ is a P̃-Brownian mo-
tion, {DtSt}t∈[0,T ] would be a P̃-martingale. The construction is achieved by Girsanov’s
theorem.

Let VT be a FT -measurable random variable, which represents the payoff of a contingent
claim written on S at time T . To derive the price of the contingent claim, we hope to
construct a self-financing portfolio {Xt}t∈[0,T ] using a hedging strategy with an adequate
level of initial capital, X0, such that, at t ∈ [0, T ]

(i) hold ∆t units of stock;

(ii) lend the amount Xt −∆tSt at the risk-free rate rt;

(iii) At t = T , XT = VT .

If such a strategy ∆t exists, by the law of one price, the price of the contingent claim at any
t ∈ [0, T ] is precisely Xt.

By the self-financing property, the dynamics of X is given by

dXt = ∆tdSt + rt(Xt −∆tSt) dt

= [rtXt +∆tSt(µt − rt)] dt+∆tStσt dBt

= rtXt dt+∆tStσt dB̃t.
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The discounted portfolio value, {DtXt}t∈[0,T ], thus follows

d(DtXt) = Dt dXt +Xt dDt + d⟨X,D⟩t = ∆tStσt dB̃t. (2)

Two implications from the above derivations:

1. Under P̃, any portfolio strategy {∆t}t∈[0,T ] always earns a risk-free rate rt;

2. the process {DtXt}t∈[0,T ] is a P̃-martingale.

Owing to the second observation, we can express the portfolio value Xt (and thus the price
of the contingent claim at t) as

Xt = Ẽ
[
DT

Dt

XT |Ft

]
= Ẽ

[
e−

∫ T
t rs dsXT |Ft

]
= Ẽ

[
e−

∫ T
t rs dsVT |Ft

]
, (3)

where the last equality follows from the assumption that, the strategy ∆ is such that XT =
VT .

This construction looks very natural, right? However, one major detail is indeed missing
– is it always possible to find ∆ in a way that XT = VT ? The martingale representation
theorem presents in the next subsection provide a positive answer to the construction.

1.2 Existence of Hedging Strategy

The risk-neutral pricing formula is based on the assumption that we can find a strategy
{∆t}t∈[0,T ] such that the portfolio value XT = VT . The existence of such a portfolio strategy
is a consequence of the martingale representation theorem (MRT):

Theorem 1.1 (Martingale representation) Let {Bt}t∈[0,T ] be a Brownian motion
on the filtered probability space (Ω,F , {FB

t }t∈[0,T ],P), where {FB
t }t∈[0,T ] is the filtration

generated by {Bt}t∈[0,T ], i.e., i.e.,

FB
t = σ (Bs : 0 ≤ s ≤ t) .

Then, for any martingale {Mt}t∈[0,T ] adapted to {FB
t }t∈[0,T ], there exists an adapted

process {Γt}t∈[0,T ] such that

Mt = M0 +

∫ t

0

Γs dBs.

The MRT essentially says, if the filtration is generated by B, any P-martingale can indeed
be written as an Itô integral with an appropriate coefficient Γ and initial condition.

Based on Theorem 1.1, we have the following martingale representation theorem upon a
change of measure:
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Corollary 1.2 Let {Bt}t∈[0,T ] be a Brownian motion on the filtered probability space
(Ω,F , {FB

t }t∈[0,T ],P). Let

B̃t := Bt +

∫ t

0

θs ds, Zt := exp

(
−
∫ t

0

θs dBt −
1

2

∫ t

0

θ2s ds

)
.

Then, for any {Ft}t∈[0,T ], P̃-martingale {M̃t}t∈[0,T ], there exists an {FB
t }t∈[0,T ]-adapted

process {Γ̃t}t∈[0,T ] such that

M̃t = M̃0 +

∫ t

0

Γ̃s dB̃s.

Proof. We first claim that Mt := ZtM̃t is a P-martingale. For any 0 ≤ s ≤ t ≤ T , using
Bayes’ theorem of condition expectation (Lemma 3.4 in Chapter 7 of MATH5635),

E[Mt|Fs] = E[ZtM̃t|Fs] = ZsEP̃[M̃t|Fs] = ZsM̃s,

which verifies the claim. By Theorem 1.1, there exists an adapted process Γ such that

Mt = M0 +

∫ t

0

Γs dBs.

To proceed, we apply Itô’s lemma on M̃t :=
Mt

Zt
. Recall

dZt = −Ztθt dBt,

so that

d

(
1

Zt

)
= −dZt

Z2
t

+
1

2

(
2

Z3
t

)
d⟨Z⟩t =

θtZt

Z2
t

dBt +
Z2

t θ
2
t

Z3
t

dt =
1

Zt

(
θ2t dt+ θt dBt

)
.

Hence, by the product rule,

dM̃t = d

(
Mt

Zt

)
=

dMt

Zt

+Mtd

(
1

Zt

)
+ d

〈
M,

1

Zt

〉
=

Γt

Zt

dBt +
Mt

Zt

(
θ2t dt+ θt dBt

)
+

θtΓt

Zt

dt

=
θt
Zt

(Mtθt + Γt) dt+
1

Zt

(Γt + θtMt) dBt

=
θt
Zt

(Mtθt + Γt) dt+
1

Zt

(Γt + θtMt)
[
dB̃t − θt dt

]
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=
Γt + θtMt

Zt

dB̃t

=

(
Γt

Zt

+ M̃t

)
dB̃t.

Therefore, we arrive at the representation with

Γ̃t :=
Γt

Zt

+ M̃t.

The existence of {∆t}t∈[0,T ] can now be proven using Corollary 1.2. We define a process
{Ṽt}t∈[0,T ] by

Ṽt := Ẽ
[
DT

Dt

VT |Ft

]
. (4)

This is exactly the equation satisfied by X in (3). However, unlike the derivation of (3), the
process {Ṽt}t∈[0,T ] is defined independently of any trading strategy, which is always possible.
By construction, {DtṼt}t∈[0,T ] is a P̃-martingale. Hence, by the MRT (Corollary 1.2), there
exists an adapted process Γ̃ such that

DtṼt = Ṽ0 +

∫ t

0

Γ̃s dB̃s. (5)

Now, define the initial capital X0 := Ṽ0, and the hedging strategy by

∆t :=
Γ̃t

Stσt

. (6)

Substituting this and the choice of initial capital X0 = Ṽ0 into the dynamics (2), we
have

DtXt = X0 +

∫ t

0

∆sSsσs dB̃s = Ṽ0 +

∫ t

0

Γ̃s dB̃s.

which is precisely (5). Hence, Xt = Ṽt for all t ∈ [0, T ]. In particular, XT = ṼT = VT .
Therefore, the desired hedging strategy is indeed given by (6).

The MRT only tells us the a hedging portfolio exists and is related to the process Γ̃.
However, it does not give the explicit form of the process Γ̃ in general. Recall that in the
particular case when we were pricing European options under the Black-Scholes model, i.e.,
µ· ≡ µ and σ· ≡ σ > 0 and VT = V (T, ST ), the hedging portfolio is given by

∆t = VS(t, St),
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where V (t, s) represents the price of the European option at time t when St = s, which
is the solution of the Black-Scholes partial differential equation (PDE). Hence, the
corresponding process Γ̃ is given by

Γ̃t = Stσt∆t = StσtVS(t, St).

In the next chapter, we will further relate the hedging strategy with solutions of PDEs.

2 Multidimensional Pricing Model
In this section, we consider a market with m risky assets driven by a d-dimensional Brownian
motion in the filtered probability space (Ω,F , {Ft}t∈[0,T ],P),

Bt = (B1
t , . . . , B

d
t ), t ∈ [0, T ],

such that each Bi, i = 1, . . . , d, is a standard 1-dimensional Brownian motion, each Bi, Bj

are independent for i ̸= j.

We write St = (S1
t , . . . , S

m
t ), where Si

t represents the price of the i-th risky asset at time
t, which is governed by the following dynamics:

dSi
t = µi

tS
i
t dt+ Si

t

d∑
j=1

σij
t dBj

t . (7)

Here, (µi)mi=1, (σij)i=1,...,m,j=1,...,d are {Ft}-adapted processes representing the rate of return
vector and the volatility matrix, respectively.

Our objective is to construct risk-neutral measures and replicating portfolios for contin-
gent claims in a multi-dimensional pricing model. Unlike the one-dimensional case, this
requires additional conditions on the drift and volatility coefficients. We begin by extending
the definition of a risk-neutral probability measure to the multi-dimensional setting.

Definition 2.1 (Risk-neutral measure for multidimensional models) A proba-
bility measure P̃ is called a risk-neutral probability measure if

1. P̃ is equivalent to P, i.e., P̃ ∼ P;
2. for i = 1, . . . ,m, the discounted price of risky asset, {DtS

i
t}t∈[0,T ], is a P̃-martingale.

In the sequel, we shall need the following generalization of Girsanov’s theorem and MRT
for multidimensional models, which we state without proof. Nevertheless, we remark that
the multidimensional Girsanov’s theorem can be proven using Lévy’s characterization.
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Theorem 2.1 (Multidimensional Girsanov’s) Let {Bt}t∈[0,T ] be a d-dimensional
Brownian motion in the filtered probability space (Ω,F , {Ft}t∈[0,T ],P), and {θt}t∈[0,T ] be
a d-dimensional adapted process of the form θt = (θ1t , . . . , θ

d
t ). Define the processes

Zt := exp

(
−
∫ t

0

θs · dBs −
1

2

∫ t

0

|θs|2 ds
)

= exp

(
−

d∑
j=1

∫ t

0

θjs dB
j
s −

1

2

∫ t

0

d∑
j=1

|θjs|2 ds

)
,

B̃t := Bt +

∫ t

0

Θs ds =

(
B1

t +

∫ t

0

θ1s ds, · · · , Bd
t +

∫ t

0

θds ds

)
.

Suppose that

E
[∫ T

0

|θt|2Z2
t dt

]
< ∞.

Then, E[ZT ] = 1, and under the probability measure P̃, where

P̃(A) := E[ZT1A], A ∈ FT = F ,

the process {B̃t}t∈[0,T ] is a standard Brownian motion.

Theorem 2.2 (Multidimensional martingale representation) Let {Bt}t∈[0,T ] be a
d-dimensional Brownian motion on the filtered probability space (Ω,F , {FB

t }t∈[0,T ],P),
where {FB

t }t∈[0,T ] is the filtration generated by {Bt}t∈[0,T ], i.e., i.e.,

FB
t = σ (Bs : 0 ≤ s ≤ t) .

Then, for any martingale {Mt}t∈[0,T ] adapted to {FB
t }t∈[0,T ], there exists a d-dimensional

adapted process {Γt}t∈[0,T ] with Γt = (Γ1
t , . . . ,Γ

d
t ) such that

Mt = M0 +

∫ t

0

Γs · dBs.

In addition, using the notations and assumptions in Theorem 2.1, for any P̃-martingale
{M̃t}t∈[0,T ] adapted to {FB

t }t∈[0,T ], there exists a d-dimensional adapted process
{Γ̃t}t∈[0,T ] with Γ̃t = (Γ̃1

t , . . . , Γ̃
d
t ) such that

M̃t = M̃0 +

∫ t

0

Γ̃s · dB̃s.
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3 First Fundamental Theorem of Asset Pricing
This section discusses the existence of risk-neutral probability measure under the multidi-
mensional market model and its relationship with the no-arbitrage property of the market.
The latter is framed as the first fundamental theorem of asset pricing .

Recall in the 1-dimensional case, to make {DtSt}t∈[0,T ] a P̃-martingale, we “absorb" the
drift term of DtSt into the stochastic integral:

d(DtSt) = DtSt(µt − rt) dt+DtSTσt dBt = DtStσt (θt dt+ dBt) ,

and we define B̃t such that dB̃t = θt dt + dBt. In the multidimensional case, we follow a
similar path, except that the market price of risk would be a d-dimensional vector, which
shall be solved by a system of linear equations.

For i = 1, . . . ,m, by the product rule, we have

d(DtS
i
t) = Si

t dDt +Dt dS
i
t

= −rtDtS
i
t dt+DtS

i
t

(
µi
t dt+

d∑
j=1

σij
t dBj

t

)

= DtS
i
t

[
(µi

t − rt) dt+
d∑

j=1

σij
t dBj

t

]
. (8)

Suppose that there exists a d-dimensional process θ = (θ1, . . . , θd) such that,

µi
t − rt =

d∑
j=1

σij
t θ

j
t , i = 1, . . . ,m, t ∈ [0, T ]. (9)

Then, we can rewrite (8) as

d(DtS
i
t) = DtS

i
t

[
d∑

j=1

σij
t θ

j
t dt+

d∑
j=1

σij
t dBj

t

]

= DtS
i
t

d∑
j=1

σij
t

[
θjt dt+ dBj

t

]
= DtS

i
t

d∑
j=1

σij
t dB̃j

t , (10)

where B̃j
t := Bj

t +
∫ t

0
θjs ds. By Girsanov’s theorem (Theorem 2.1), we can define P̃ such that

B̃t = (B̃1
t , . . . , B̃

d
t ) is a d-dimensional P̃-Brownian motion, making each DtS

i
t , i = 1, . . . ,m

a P̃-martingale. Consequently, P̃ is a risk-neutral probability measure.
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Therefore, the existence of a risk-neutral probability measure amounts to the existence of
solutions for the linear system (9) for t ∈ [0, T ], which we shall refer to as the market price
of risk equations. One can also express the system in matrix form: define

Σt :=

σ11
t · · · σ1d

t
... . . . ...

σm1
t · · · σmd

t

 ∈ Rm×d, αt =

µ1
t − rt

...
µm
t − rt

 ∈ Rm. (11)

Then, the system is equivalent to solving θt such that

Σtθt = αt, t ∈ [0, T ]. (12)

Note that for each t ∈ [0, T ], the system has m equations with d unknowns.

Theorem 3.1 A risk-neutral probability measure exists if the market price of risk equa-
tions (9) (or equivalently, (12)) admits a solution for all t ∈ [0, T ]. Equivalently, such a
measure exists if, for any t ∈ [0, T ],

αt ∈ Col(Σt),

where Col(A) denotes the column space of a matrix A.

A sufficient condition for existence of a risk-neutral probability measure is rank(Σt) = d
for all t ∈ [0, T ]. Theorem 3.1 only discuss conditions for existence of risk-neutral measures,
but not uniqueness. Indeed, there may exist multiple risk-neutral probability measures, and
the implications shall be discussed in the next section.

Consider the portfolio value process {Xt}t∈[0,T ] with the self-financing portfolio strategy
∆t = (∆1

t , . . . ,∆
m
t ) with an initial capital X0, where:

1. ∆i
t denotes the number of shares held in the i-th risky asset with price Si

t . The total
market value invested in the risky assets S is thus

∑m
i=1∆

i
tS

i
t ;

2. the remainder of the portfolio value earns a risk-free rate rt.

Hence, the dynamics of Xt is given by

dXt =
m∑
i=1

∆i
t dS

i
t + rt

(
Xt −

m∑
i=1

∆i
tS

i
t

)
dt

= rtXt dt+
m∑
i=1

∆i
t

(
dSi

t − rtS
i
t

)
dt

= rtXt dt+
m∑
i=1

∆i
t

Dt

d(DtS
i
t). (13)
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Hence, the discounted portfolio value, DtXt, has the following dynamics:

d(DtXt) = Xt dDt +Dt dXt =
m∑
i=1

∆i
t d(DtS

i
t). (14)

If a risk-neutral probability measure P̃ exists such that DtS
i
t , i = 1, . . . ,m, are P̃-

martingales. Then, from (2) and (14), we have the following observations, similar to the
1-dimensional case:

1. the portfolio Xt earns the risk-free rate rt under P̃;

2. the discounted portfolio value DtXt is a P̃-martingale.

The existence of a risk-neutral probability measure asserts that the market is free from
arbitrage opportunity, which is framed in the first fundamental theorem of asset pric-
ing. We first define the meaning of arbitrage:

Definition 3.1 An arbitrage is a portfolio Xt such that X0 = 0, and there exists T > 0
such that

P(XT ≥ 0) = 1, P(XT > 0) > 0.

In other words, an arbitrage is a self-financing portfolio with zero initial capital that never
incurs a loss and yields a strictly positive payoff with positive probability.

The following theorem is the main result of this section, which states that a market is
arbitrage-free if P̃ exists.

Theorem 3.2 (First fundamental theorem of asset pricing) If there exists a risk-
neutral probability measure for the market model, then the market admits no arbitrage.

Proof. Let Xt be a portfolio with zero initial capital, i.e., X0 = 0. If P̃ exists, by the above
discussion, we know that DtXt is a P̃-martingale.

Assume that contrary that Xt is an arbitrage, i.e., there exists T > 0 such that P(XT ≥
0) = 1, P(XT > 0) > 0. By the equivalence of P and P̃, we also have P̃(XT ≥ 0) = 1,
P̃(XT > 0) > 0. Since DT > 0 a.s., we have DTXT ≥ 0 P-a.s., and P̃ (DTXT > 0) > 0. This
would imply

Ẽ[DTXT ] > 0.

However, using the martingale property of DtXt under P̃ and the fact that X0 = 0, we have

Ẽ[DTXT ] = D0X0 = 0,

which is absurd. Hence, no arbitrage exists.

The following example illustrates that arbitrage could exist if (9) is not solvable.
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Example 3.1 Suppose that there are 2 stocks with 1 driving Brownian motion, i.e.,
m = 2 and d = 1. In addition, we assume that all model parameters, µ, r, σ, are
constants. As such, the system (9) is reduced to a 2× 1 system:

µ1 − r

σ1
= θ,

µ2 − r

σ2
= θ.

The system is solvable iff
µ1 − r

σ1
=

µ2 − r

σ2
.

Suppose that the above condition does not hold, and without loss of generality, suppose
that µ1−r

σ1 < µ2−r
σ2 . Then, consider a portfolio with ∆1

t = − 1
S1
t σ

1 units of S1 (short), and
∆2

t =
1

S2
t σ

2 units of S2 (long). The amount of initial capital required would be

∆1
0S

1
0 +∆2

0S
2
0 =

1

σ2
− 1

σ1
.

We borrow (resp. lend) at the risk-free rate if 1
σ2 − 1

σ1 is positive (resp. negative). In that
case, the initial capital is X0 = 0.
For t > 0, the dynamics of X is given by

dXt =
2∑

i=1

∆i
tdS

i
t + r(Xt −∆1

tS
1
t −∆2

tS
2
t ) dt

= − 1

σ1

(
µ1 dt+ σ1 dBt

)
+

1

σ2

(
µ2 dt+ σ2 dBt

)
+ r

(
Xt +

1

σ1
− 1

σ2

)
dt

= rXt dt+

[
µ2 − r

σ2
− µ1 − r

σ1

]
dt.

Hence, the discounted portfolio value is

d(DtXt) = Dt

[
µ2 − r

σ2
− µ1 − r

σ1

]
dt.

By the given assumption, DtXt is non-random with a positive drift, whence it admits a
positive and non-random portfolio value with zero initial capital, i.e., arbitrage.

The existence of RNMs is characterized by the existence of solutions to the system (12).
Below we examine the relationship between the existence and the values of m and d.

• Case 1: m > d
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– More assets than sources of randomness, the system (12) is overdetermined;

– Risk-neutral measure exists only if the asset drifts are mutually consistent (see Example
3.1 for inconsistent asset drifts).

• Case 2: m < d

– Fewer risky assets than sources of randomness, the system (12) is underdetermined;

– The system either has no solution (inconsistent drifts; no RNM), or infinitely many
solutions (consistent drifts; multiple RNMs)

• Case 3: m = d

– If Σt is invertible, then RNM exists and is unique;

– If Σt is not invertible, then either RNM does not exists, or there exists infinitely many
RNMs.

Summary: The existence of RNMs is “easier” when m ≤ d, since more risky assets may
lead to inconsistent drift conditions.

4 Second Fundamental Theorem of Asset Pricing
In this section, we discuss the uniqueness of risk-neutral probability measure and its implica-
tion – market completeness. This result is depicted in the second fundamental theorem
of asset pricing.

Definition 4.1 A market is said to be complete if, for any contingent claim with payoff
VT ∈ L2(FT ), there exists a self-financing portfolio strategy ∆t = (∆1

t . . . ,∆m
t ) and an

initial capital X0 such that
XT = VT , P-a.s.

Recall that if a risk-neutral probability measure P̃ exists, the risk-neutral price of the
contingent claim at time t is given by

Vt := Ẽ
[
DT

Dt

Vt

∣∣Ft

]
. (15)

By the law of one-price (or the first fundamental theorem of asset pricing), in that case, a
market is complete iff there exists a self-financing portfolio strategy ∆t and an initial capital
X0 such that for any t ∈ [0, T ],

Xt = Vt, P-a.s

In the sequel, we assume that the filtration {Ft}t∈[0,T ] is generated by the d-dimensional
Brownian motion B, i.e., Ft = FB

t . We also assume that a risk-neutral probability P̃ exists.
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Since {DtVt}t∈[0,T ] defined in (15) is a P̃-martingale, by the multidimensional MRT (Theorem
2.2), there exists a d-dimensional process Γ̃t = (Γ̃1

t , . . . , Γ̃
d
t ) such that

DtVt = V0 +
d∑

j=1

∫ t

0

Γ̃j
s dB̃

j
s . (16)

On the other hand, consider a portfolio with initial capital X0 and self-financing portfolio
strategy ∆t, using (14) and (10), its dynamics is given by

DtXt = D0X0 +
m∑
i=1

∫ t

0

∆i
s d(DsS

i
s)

= D0X0 +
d∑

j=1

∫ t

0

m∑
i=1

∆i
sDsS

i
sσ

ij
s dB̃j

s , (17)

By equating (16) and (17), the desired portfolio strategy can be obtain by solving the
following system of equation:

m∑
i=1

∆i
tS

i
tσ

ij
t =

Γ̃j
t

Dt

, j = 1, . . . , d, t ∈ [0, T ]. (18)

Note that for each t ∈ [0, T ], (18) is a linear system with d equations and m unknowns. By
letting

βt :=


Γ̃1
t

Dt...
Γ̃d
t

Dt

 ∈ Rd, yt :=

 ∆1
tS

1
t

...
∆m

t S
m
t

 ∈ Rm,

the system (18) can also be written as

Σ⊤
t yt = βt, t ∈ [0, T ], (19)

where Σt ∈ Rm×d was defined in (11). Hence, the contingent claim can be hedged in (19)
admits a solution.

The following is the main result of this section, which relates market completeness with
uniqueness of risk-neutral measures.

Theorem 4.1 (Second fundamental theorem of asset pricing) Suppose the risk-
neutral measures exist in a market model. Then, the market is complete if and only if
the risk-neutral measure is unique.
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Proof. Suppose that the market is complete. We shall show the the risk-neutral probability
measure is unique.

Let P̃1 and P̃2 be two risk-neutral measures, and denote the associated expected values
by Ẽ1 and Ẽ2, respectively. Let A ∈ FT = FB

T , and consider a contingent claim with payoff
VT = 1A

DT
. Since the market is complete, under each P̃i, i = 1, 2, there exists a portfolio with

initial capital X i
0 and a self-financing strategy such that X i

T = VT , i = 1, 2, and that DtX
i
t

is a P̃i-martingale. Hence,

X1
0 = Ẽ1[DTX

1
T ] = Ẽ1[DTVT ] = P̃1(A),

X2
0 = Ẽ1[DTX

2
T ] = Ẽ1[DTVT ] = P̃2(A).

Note that by the first fundamental theorem of asset pricing, no arbitrage could exist, and
thus X1

0 = X2
0 . Hence, P̃1(A) = P̃2(A). Since A ∈ FT is arbitrary, we conclude that P̃1 ≡ P̃2.

Next, we suppose that the risk-neutral probability measure P̃ is unique. This is equivalent
to requiring that the system (12) admits a unique solution for each t ∈ [0, T ]. Hence, for any
t ∈ [0, T ], null(Σt) = dim(Ker(Σt)) = 0, where

Ker(A) := {x ∈ Rd : Ax = 0}.

By the rank-nullity theorem, we have rank(Σt) = d − 0 = d, for any t ∈ [0, T ], which also
implies rank(Σ⊤

t ) = d. Consequently, the system (19) is solvable for any given βt ∈ Rd.
In other words, one can always find a hedging strategy that replicates the payoff of any
contingent claim. Therefore, the market is complete.

We examine the relationship between the uniqueness of a RNM and the values of m and
d, which is characterized by the system (19).

• Case 1: m > d

– More risky assets than sources of randomness; the system (19) is under-determined;

– If a risk-neutral measure exists, then it is unique if and only if rank(Σt) = d for all
t ∈ [0, T ].

• Case 2: m < d

– Fewer risky assets than sources of randomness, the system (19) is over-determined;

– Since rank(Σt) ≤ m < d, there exists contingent claims such that (19) is not solvable;

– The market is not complete.

• Case 3: m = d

14



– If Σt is invertible, then RNM exists and is unique;

– If Σt is not invertible, then either RNM does not exists, or there exists infinitely many
RNMs.

Summary: The uniqueness of RNMs is “easier” when m ≥ d, since more risky assets can be
used to hedge the sources of randomness.

Further Readings
1. Novikov’s condition and its relation with Girsanov’s theorem;

2. Risk-neutral pricing under incomplete market, i.e., multiple risk-neutral measures;

3. Pricing of forwards and futures.
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